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Summary: The cross-section o f  an arbitmri ly-shaped waveguide i s  transformed 

into a rectangle, The rectangular guide i s  f i l led with a nonuniform anisotropic 

medium with such a distribution that the propagation properties are the same. 

Feenberg's perturbation method and the Rayleigh-Ritz method can be used for 

determining the Drowaation . . -  characteristics and the field distribution of the 

rectangular guide. The propagation constants of parabolic and el l ipt ic guides 

are determined by both methods and compared with the exact values. 
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I n t rodu c t i on 

The common rectangular and circular waveguides often do not have the 

desired properties which can be obtained by other cross-sections. The ridged 

waveguide i s  an example for such a guide. The compution of the piopeities o l d  

characteristics of such nonconventional waveguides can be carried out by conformal 

mapping as described by Tischer and Yee in  preceding reports. 1,2 

I f  the cross-section of an arbitrarily shaped air filled waveguide cun be 

transformed by conformal mopping into a rectangle, the analysis of the arbitrarily 

shaped guide can be replaced by that of u rectangular guide filled with a 

nmunifom and anisotropic medium, The propagation properties of the latiei guide 

can be computed by methods of  solving partial differential equations of second 

order with variable coefficients. Feenberg's perturbation method was Jesci i k d  

previous I y . 
In cases where the Feenberg pertubation method i s  slowly convergent or 

not convergent at all, the Rayleigh-Ritz method may be used for determining the 

characteristics of the guide. 

In this report the parabolic and the el l ipt ic guide ore considered a s  examples 

Firsr, rhe paraboiic guide wirii a vane I I  I 
( I v I I - ~ v I I v ~ l l i i u I I u I I y  srlupaci wuveguicies. 

i s  analyzed and i t s  characteristics computed by both Feenberg's and Rayleigh-Ritz 

methods. The results are compared with the known exact solutions. Pdexi, the 

propagation constants for a number of vane modes of a semi-elliptical guide are 

ca I cu la ted . 

Conformal Mapping 

Two cross-sections o f  waveguides, one arbitrarily shaped and one rectunguloi , 

are assumed. The two cross-sections form lines of constant coordinates i n  two complex 

F. J. Tischer, Proc. IEEC, Vol. 51, pp. 1050, July 1963. 

F. J. Tischer and H. Y. Yee, UARl Research Report No. 12, Iltiiveisity of 
Alabama Research Institute (1964). 
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planes as shown i n  Fig. 1. Points along the cross-sections and bxndaries are 

interrelated by a complex function 

R = p + iq = f (Z), 

where R = p + iq i s  the plane with the air fil led cross-section, and Z = x + iy i s  

the plane with non-uniformly filled cross-section. 

The original air-filled waveguide i s  bounded by a perfect conductor. The 

rectangular equivalent guide which has perfectly conducting walls i s  f i l led by a 

non-uniform anisotropic medium as shown in reference 2. The properties of the 

medium are described by a tensor permittivity and permeability as follows: 

The wave equation for the rectangular guide i s  given by 

2 2  
A Y + k h ( X ~ Y )  v= 0 

2 2 2  k = ko -k 
Z I  

2 2 k = w  I 
0 0 

The quantity k 

length. The scale factor h of the conformal mapping i s  given by 

i s  the longitudinal propagation constant and X ,  i s  the guide wave- 
Z 
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Fig. I - Cross-sections of waveguides in  corresponding arnplex planes. (a) 
Arbitrary shupo in the R-plane. (b) The corresponding rectangular 
cross-section in the Z-plane. 
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The function 

magnetic field intensities. For TE wave modes ')L= H 

stands for the hypothetical components of  the electrical and 

for TM wave modes 
Z f  

i s  subject to the boundary conditions: = E=. The scalare function 

for TM modes. The corresponding conditions for TE modes are 

The next step consists in finding solutions of  the wave equation 

into account the boundary conditions [ Eqs. (2) 1 . 
Eq. (1) 1 taking 

The Feenberg Perturbation Method 

Except for four well known cases, Eq. (1) i s  nonsepamble and no exact 

solutions for arbitrary boundaries are known. Therefore , approximate techniques 

must be used. Two methods of solving the wave equation by which the cut off  

frequencies , the propagation constants, and the fields distributions can be computed 

are described. They are Feenberg's perturbation method 2f and Rayleigh-Ritz 

method. 

Feenberg's method requires an expansion of the scalar function i n  terms 

of a complete set of orthonormal functions { $  1 , i.e. set 
q 

where $ satisfies the bwndary conditions as does, 
9 

P. M. Morse and H. Feshbach, Methods of Theoretical Physics, (McGraw-Hill 
Book Company, Inc. , New York, 1951) pp. 1010. 
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1 i f r = q ,  
rq i f  r = q. 

6 = I o  . 

The summation i s  carried out over a l l  possible values of q, the integration i s  

taken over the cross-section of the guide in  the Z plane. Since AP i s  continuous 

over the region, substituting Eq. (3) into Eq. ( 

where 
L A $  + L  9 = O ,  

9 9 9  

) and some manipulation yields 

= 0, (4) 

and L i s  a constant. For a two dimensional problem, the subscript q denotes the 

general indices 
9 

. . . . . . . . . 
m, n = 0,1,2,3, 

I f  p indicates a specific pair of m, n for TE or TM mode, Eq. (4) can be solved 

for k 2 2 
by Feenberg's iterative approximate rnethod os fc!!!ows: 

P 

First order: 

Second order: 
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higher order approximations and the expressions for the expansion coefficients 

A 

are solutions of Eq. (5) and satisfy the pertinent boundary conditions for TE modes 

can be found in reference 2. A suitabie set of  orthonormal functions which 
q 

IS 

where E = 1, i f  m,n = 0, and e = 2 i f  m,n # 0. The corresponding set 

of functions for TM modes i s  

m, n mr n 

2 The constant L i s  given by 
9 

The approximate e igenfunction 

expansion coefficients A 

of k as shown i n  reference 2. 

FP mav , be obtained from Ea. (3) i n  which the 

can be calculated by substituting the approximate value 
q 2 

In  some cases, the successive approximation of Eq. (6) i s  slowly convergent or 

P 

not convergent at  all. Under those conditions, other methods have to be applied. 

The Rayleigh-Ritz Method 

The difficulties resulting from non-convergence can be avoided by the Rayleigh- 

Ritz method. 4r5 The application of this method to the present problem wi l l  be 

described next. 

H. Sagan, Boundary and Eigenvalue Problems in Mathematical Physics (John Wiley 
and Son, Inc., New York, 1961) Chapter 3 

R. Collin, Field Theory of Guided Waves (McGraw-Hill Book Company, Inc., 
New York, 1960) Chapter 6 

4 
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It can be shown that 

SI’ . y /AVdS 2 S k = -  (9) 

where the eigenvalue k i s  a stationary quantity. It i s  a minimum i f  the corresponding 

eigenfunction 3/- i s  a solution o f  Eq. (1) and subject to the boundary conditions 

as stated in Eqs. (2). 

I f  the eigenfunction i s  approximated by , then the corresponding 

approximate eigenva I ue 

where satisfies the same boundary conditions as does. The function 
e 

I,P can be written as a finite series 

The function Q 

m,n. 

i s  given by Eqs. (7), where the subscript q denotes a pair of indices 
q 

The single sum then actually represents a f in i te double sum 

Q M N  
Z = Z  t 
q m n 

2 
with M,N being integers. Under this condition, A > k . 

-- 
Since the quantity X of Eq. (IO) i s  stationary, the scalar function of 

Eq. (IO) has to be adjusted such that the quotion on the right hand side becomes a 

minimum. By definition 

the coefficient A ‘s only. It follows 

1 Eq. (1 1) 1 , the function has to be adjusted by varying 

cl 

-- - 0, for r equal to a l l  possible values of q . ax 
r 

a A  
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Substituting Eq. (1 1) into Eq. (IO) and taking the partial differential with respect 

to A yields 
r 

where the constant L i s  defined by Eq. (8). Note that Eq. (12) i s  similar to Eq. (4) 

except the summation i s  summing over a finite number of terms instead of an infinite. 

The consequence i s  that h iemains an approximation. Since r can be taking on 

any pair of indices in q, Eq. (12) i s  a system of T linear homogeneous equations, 

where T i s  the total number of terms in  Eq. ( 1  1). In order to have a nontrivial 

solution for the A Is, the detenninent formed from the coefficients within the 

parentheses vanishes. Therefore, 

q 

q 

Eq. (13) i s  an algebric equation for A of order T. Since the matrix form of the 

determinant i s  real and symmetric, i t  always can be solved for T real roots of X by 
. I  h 
IYewron's Method or by an electronic computer. I f  h."' denotes the i root 

calculated by a T x T determinant of the form as Eq. (13) i n  which a l l  the lower order 

. I  rn IS \ 

I 

T' 
elements are included, and a l l  roots are distinct, i.e. A. < < A 3" e..-... 

I 2  

i t  can be shown that 

th 
for a l l  i, where k.' i s  the i Since the 

function 9 can be expressed i n  terms of the complete infinite set of orthonormal 

functions { @ 1 as shown in Eq. (3), i t  follows that 

propagation constant of the waveguide. 
I 

q 

G. B. Thomas, Jr., Calculus and Analytic Geometry, (Addison-Wesley Publishing 
Company, Inc., 3rd ed. 1960) pp. 451 

6 
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2 = k. lim A. (T) 
I I 

T +  00 

2 
The accuracy of  the eigenvalue ki obtained by this method can be estimated by 

observing the convergence o f  The expansion coefficients A can be 
1 q 

obtained by substituting A. into Eq. (12) and solving for A i n  terms of  A.. 
I 4 I 

Parabolic Guide With Axial Vane 

As an example of  the application of  the theory discussed previously, the 

parabolic guide with axial vane i s  considered in  this section. The cross-section of 

this guide i n  the R-plane may be transformed into a rectangle i n  the Z-plane (see 

Fig. 2) by means of the transformation function 

2 R = Z /a. 

The scale factor may be obtained by taking the magnitude of the first differentiation 

of  R with respect to Z as follows: 

c) 3 2 2 / L  
h - =  4 ( x  + y  ) /a  . 

It i s  possible to translate the y-axis in  such a manner that it i s  collinear with the 

bnundary of the rectangle i n  the Z-piane as shown in  Fig. i (b). However, for 

simplicity, instead of doing this, i t  can be shown that for a scale factor which i s  

symmetric with respect to the y-axis, the eigenfunction can be expanded as follows: 

Odd TM modes: 

V =  k,n A m,n J 2/ab sin (mx/a) sin (my/b), 

Even TE modes: 

p =  1 A m,n JEm cn/2ab cos (mnx/a) cos (my/b), 
m,n 

where the boundaries of  the rectangle are given by y = 0, y = b, x = -a, and x = a. 



I O  

1) 

I I 

P 

I -a 

L-plane. 
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TM A ' ' '  a m 
(odd) 2.955 2.843 2.795 2.78091 I 2.780895 

Under this assumption, a l l  integration i s  s t i l l  taken over the cross-section of the 

rectangular guide, and 

7 
Exact 

2.78 

2 2 L~ = (ma/a) + ( n a b )  . mn 

For the discussed case, a = b. The even TM or the odd TE modes are not considered 

since no exact solutions are available for comparison. 

Consider the oddTM mode first, the quantity B i n  both Eqs. (6) and (13) i s  

given by 

Several approximate eigenvalues of ka calculated by the Feenberg and Rayleigh-Ritz 

method for the odd TM 

subscript 1 , l  indicates only one variation i n  both x and y direction. 

mode are tabulated i n  Table 1 and Table 11, where the 
1,1  

Table 1 - Propagation constants computed by Feenberg's method 
--A &LA ̂ .,^^ L 

-- 
2.955 2.762 2.788 2.78 

Table 11 - Propagation constants computed by Rayleigh-Ritz method and 
the exact value 

7 

The exact values i s  given by J (ka) = 0 for odd TM 1/4 mm 
modes, J 3/4 &a) = 0 / 

for even TE 

Functions (Dover Publication, dth edition, 1945) 

modes. The roots were found in  E. Jahnke and F. Emde, Tables of 
mm 
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For the odd TM mode, the Feenberg's method gives rapidly convergent 

answer comparable to the exact value. Using only the three lowest order terms 

in Eq. (12), the error of Rayleigh-Ritz method i s  approximately 0.5%. The values 

of  Jx(25) a and Jx(36) a were calculated by a 7094 computor and show that 

ka = 2.780 i s  correct to four digits. 

1 ,  I 

Considering the case of even TE modes, the quantity B i s  given by 

= 8/3,  
3000 

B 

2 
B P O 0 0  = B  opoo = B  oopo = B  ooop = (-UP 8 m P 4  I p # 0 

-2 -2 -2 
B = ( V 3 )  + 2n (p + q ) f p,q # 0 
Pq w 

The first three order of apprmimations for the propagation constant k o of TE 

mode calculated by the Feenberg method are tabulated with the exact value in 

Table 1 1 1 .  The slow convergence results from the fact that the maximum of  the 

longitudinal magnetic field of  the even TE modes of the air f i l led rectangular 

guide i s  located at the same p&nt where the permittivity and permeability of the 

nm-uniformly filled rectangular guide i s  zero. For the same reason the propagation 

TE constants of the higher order even modes, like TE2, 2, 

by this method are not convergent at all. Using the 7094 computer to solve the 

36 x 36 secular determinant of the Rayleigh-Ritz method, the approximate value of  

ka for even TE 

1,1 

. . . . . . . . .etc., computed 
3 f 3  

mode i s  3.4913. This i s  an excellent solution in comparison 
I f 1  
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7 I )  

(evsn) 2.536 

TEl, 1 ( k d  
7 

Exact 

3.685 3.185 3.49 

2) 
--- (W( 

As another example of the Feenserg's methd, the semi-elliptic waveguide 

wi  I I be investigated as follows: 

The conformal transformation i s  

. 

R = a cos Z 

and transforms the cross-section of a semi-elliptic waveguide in the R-plane into 

a rectangle in the Z-plane as shown in Fig. 3. The boundaries of the rectangle 

are at  y = 0, y = b, x = 0, and x = IT. The scale factor h i s  given by 

The quantity B i s  aiven by 

TM: 
2 -2 - Stsin4 29[4b2 + (2q1~) 1 + (1/4)S 

Sinh 2b 
P1P9 = 7 P I  1 

B 

2 2 2 -1 2 2 2 -I I B = (-I) q+s b[sinh 2bJ { [ 4b + (q-s) IT I - I4b  + (q+s) IT I 
ixi P S  

TE : 

= sinh 2b/4b, 
.3003 

B 

B = (sinh 2b/4b) - (1/4) S 
POP0 P I  1 
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R-plane 

b 

- 
0 

I y = b  

ir Z -plane 

Fig. 3 - Corresponding Cross-sections. (a) Semi-elliptic guide. 
(b) Rectangular guide 
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- -  

I .234 

ti 
q # o  B = { (1/4b) + b [4b 2 + (2qn) 2 I -11 sinh 2b - - P I  1 mw 4 ,  

._-__.I_- ... -- _I_ _-__.I_ - 

I .203 I. 204 1.2 

2 2 2  -1 2 2 2 -1 B = (-l)q'r bsinh 2b { [ 4 b  + (q+s) a I + [4b + (q-s) a I I ,  q f s 
Pv-9 

2 2 2  
B = B  = (-l)q J'-z bsinh 2b/(4b + q  a ), 
wpo POW 

The propagation constants of TM 1,l ' 
Feenberg method up to the 3rd order approximation. They are tabulated in Table IV, 

and compared with the exact values. 

TM21 and TEIO modes are computed by the 

Table IV  - Propagation constants computed by Feenberg's 
Method with exact values 1 I (ka)") 1 (ka)(2) 1 (ka)(3) 1 Exact 

3.182 3.073 3.0P.2 3.0 
-- -- 

- - __. - - - _. - _ _  - __ - 
TMl 1 

TM2 1 4. IO4 3.839 3.  a85 

Note that the convergence i s  very good for these three cases, but no convergence 

i s  obtained for the TE 

previous example. 

mode. This can be explained by the same reason as in the 11 

Calculated from curves given by L. J. Chu, J. Appl. Phys. vol 9, pp. 583, 

September 1938 

8 
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D i scu ssi on 

The cross-section of an arbitrari ly-shaped waveguide i s  transformed into 

a rectangle. The equivalent rectangular guide i s  then filled with a nonuniform, 

anisotropic medium. The Feenberg perturbation methzid and the Rayleigh-Ritz 

method can be used for determining the propagation characteristics and the field 

components distribution. The latter method i s  preferable in cases where the 

convergence of the former method i s  not satisfactory. For higher-order modes, 

the Feenberg's methDd i s  simpler i f  the convergence i s  satisfactory. The computed 

examples show that good approximation can be achieved with small number of  

terms. 

It should be mentioned that the arbitrary cross-section also can be trans- 

formed into a circle. The basic equations remain the same except the expansion 

of the eigenfunction i n  terms of cylindrical functions. The expansion i s  

y - =  I: I: A J (dmn r) cos m , m n  mn 

where TM: Jm (arnn ro)= 0; 

the cylinderical conducting wall. 

TE: J ' ( Mmnr-) = 0, and r- i s  the radius of 
?? ..... " W 
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